
AD-AlSb o35 STA fOD UNIV CA DEPT OF COMPUTER SCIENCE FIG 12/1

VERIFICATION OF CONCURRENT PROGRAMS. PART II. TEMPORAL PROOF PR--ETCIU)
SEP 81 Z MANNA, A PNLELI N0OI-76-C-0687

UNCLASSIFIED STAN-CS-81-843 AFOSR-TR-82-0495 NA.

-A fl5 F lflfl /l l f l/fl
/EEEEI//I/EEEE
I-EII/I/IEI/I
I-° hE hII7'

1111111112.2

i __ = IItII~

1111I L

MICROCOPY RESOLUTION TEST CHART

sewniOr 1981 Report. No. S'AN- JS81-843

IFOSR-TR" 82- 495(

- Verification of Concurrent Programs, Part I1:
Temporal Proof Principles

A hy

Zohar Manna

Arnir Pnueli

Department of Computer Science

Stanford IUliversity
Stanford, CA 94305

. Approved for publ erel&as,

t.--, \ distribution unlimited.
". G NIZVD\.,'

- --

. 4. LA31IFICATIOff Of HYIS 'AG2 (1Wen Data Snete

FiT~t 1 DOCUMENTATION PAGE EADISRCIN
P Cf"Iis 2 0A&WO I CESSION NO. S.R~PET'S CATALOG NUMBER

4T IT LE (and Subdtle) S. TYPE OF REPORT 6 PERIOD COVERED

VERIFICATION OF CONCURRENT PROGRAMS, PART 11: TECHNICAL
TEMPORAL PROOF PRINCIPLES S. PERFORMING ORG. REPORT NUMBER

7L AUTNOR(a) 4. CONTRACT ORt GRANT NUMSER(e)

Z. Manna
A. Pnueli AFOSR-81-0014

9. PERFORMING ORGANIZATION NAME AND ADDRESS 16 RGA LMNT RJC.TS
AREA II WORK UNIT "UMBERS

Department of Computer Science
Artificial Intelligence Laboratory 61102F 2304/A2
StanfordUniversity,_Stanford,_CA__94305 ______________

11. CONTROLLING OFFICE NOAME AND ADDRESS It. REPORT DATE
Mathematical & Information Sciences Directorate SEP 81
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB, DC 20332 51
IC. MONiTORING AGENCY NAME & A011RESSirU different from Controfllj Offie) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED

IS&. O~SI FriCATION/ oowNrRADIN G

16 DISTRIBUTION STATEMENT rot thi* Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the ebetract enterd in Block 30, it different from Report)

III. SUPPLEMENTARY NOTES

Appears in the Proceedings of the Workshop on Logics of Programs,
Yorktown Heights, NY, Springer-Verlag Lecture Notes in Computer Science, 1981

19 KEY WORDS (Continue en revere*e .1*1i neeeeemy and tdentify by black tnmnbr)

&ABSTRACT (Conthma'. an eees Of necosemy and identify by bWmah member)
ln this paper, the second of a series on the application of temporal logic to
concurrent programs, we present proof methods for establishing invariance (safety
and eventuality (riveness) properties.
The proof principle for establishing invariance properties is based on compu-Itational induction, and is a generalization of the Inductive assertion method.
For a restricted class of concurrent program we present an algorithm for the
automatic derivati on of invariant assertions. N(over)

D O N" 1473 3MSW61nOlt @I vevsos OmLffTEU

f4 '4 " 4 i

In order to establish eventuality properties wE' a,Ea 6@eil IR~of,., 'F
principles that traselate the stzucture of the program into basic temporal
statements about its 'eJbavior.. These principles can be viewed as providing
toe temporal semantics of the program. The basic statements thus derived are
then combined into tew~ral proofs for the establishmmnt of eVentuality
properties. This method Seneralixes the intermitten~t assertion method.

The proof principles e amply illustrated by examples.

"wm"

01ASWORMI ON Ae

AIR FORM OFt TCE D: SCI TIFIC Mc&%Rm9 'ASC)

NOTICE OF TR;USKITAAL TO DTIC
This technical report has been reviewd 2od is
approved for piz"lie release IAW AR 190-l2.

Distribution is unlimited.
VATTE1 J. KERM

Chief, Tehnical InforBationDiViSion

VERIFICATION OF CONCURRENT PROGRAMS:
TEMPORAL PROOF PRINCIPLES

by

ZOIIAR MANNA AMIR PNUELI &
Computer Science Department Applied Mathematics Department
Stanford University The Wcizmatin Institute
Stanford, CA Rehovot, Israel
and
Applied Mathematics Department X
The Weizinann Institute

Rehovot, Israel (oVO ,/y /

Abstract,/.

In this paper, the second oa series on theaPPlication of temporal logic to concurrent programs,
we present proof methods for establishing invariance (safety) and eventuality (liveness) properties.

The proof principle for establishing invariance properties is based on computational induction,

and is a generalization of the inductive assertion method. For a restricted class of concurrent
programs we present an algorithm for the automatic derivation of invariaut assertions.

In order to establish eventuality properties we present several proof principles that translat.e
the structure of the program into basic temporal statements about its behavior. These principles
can be viewed as providing the temporal semantics or the program. The basic statemeits thus

derived are then combined into temporal proofs for the establishment of eventuality properties.
This method generalizes the intermittent assertion method.

The proof principles are amply illustrated by examples.

The first paper in this series, the temporal framework part, appears in The Correctness Problem

in Computer Science (i. S. lloyer aod .1 S. Moore, eds.), International Lecture Series in Computer
Science, Academic Press, London, 1981.

This paper appears in the Proceedings of the Workshop on Logics of Programs (Yorktown-le ights,

*NY), Springer-Verlag Lecture Notes in Computer Science, 1981.

This research was supported in part by the National Science Foundation under grants MCS79-
09495 and MCS80-06930, by the Ohlice or Naval Research under Contract N0001 1-76-C-0687, and

by the lUnited States Air Force Ollice of Scientific Research under Grant AI'OSI-81-0011.

""7

INTRODUCTION

In a previous report [MP2 we introduced the temporal framework for reasoning about con-
current programs. We described the model of concurrent programs that we study which is based
on interaction via shared variables and defined the concept of fair execution of such programs. We
then demonstrated the application or the temporal logic formalism to the ezpression of properties
of concurrent programs. Program properties of interest can be classified according to the syntactic
form of the temporal formula expressing them; we studied three classes of properties: invariance
properties, eventuality properties and precedence properties. We have shown that almost all of the

*: program properties that were ever considered or studied for either sequential or concurrent pro-
grams fall into one of these three categories. These include properties such as partial correctness,
clean behavior, global invariants, mutual exclusion, safety, deadlock absence, output integrity in
the invariance category; total correctness, intermittent assertion realization, accessibility, liveness,
responsiveness in the eventualities category; and safe liveness, absence of unsolicited response,
FIFO responsiveness ani general precedence in the precedence category.

In this paper, a sequel to IMIP2], we concentrate on the application of the temporal logic

formalism to proving these properties. We woul(d thus present methods for establishing that a
given program indeed possesses a certain property. In principle, once a property has been expressed
within the temporal logic formalism, and an appropriate temporal characterization of the behavior
of the given program derived ([MANI], [M[ll, [PNUI], [INU2]), the task of proving that the
property holds for this program reduces to proving the validity of a certain temporal implication.'
This implication states that every sequence of states, if it is a fair computation of the given
program, has the desired property.

These principles can be justified by the general temporal formalism, and once justified, provide
direct, simple, and intuitive rides for the establishment of these properties. rhey usually replace
long but repetitively similar chains of primitive steps in more detailed proofs, and help us focus
on the higher level overview of the proof while retaining the necessary standard of rigor.

Previous attempts to develop proof techniques for concurrent programs include [KELI, ILAMI
and JOGI.

In our exposition, we assume that the reader is familiar with the concepts and definitions
introduced in our first paper or this series - IMP2I.

rri, INVARIANCE PRINCIPLE

Consider a typical concurrent program P of form

J {(Y := fo4)); III' . . IIPm

with input parameters :F = (x1, . .. ,xk) and shared program variables = (yr, ... ,Y,) over a
domain D. Let 0' be a classical formula, i.e., a formula with no modal operators. The basic idea
in proving that the formula b is an invariant of the program P, i.e.

is to show that:

2

(a) the precondition ip(x) implies that 0 is true initially.

(b) 4b is preserved by any possible transition of the program P; that is, if it were true before
the transition then it also will be true aflter the transition.

I' We can then infer the invariance of 0/ under the precondition o()

To state the result more precisely, let Q(ir;y) be a "state property", i.e., it is expressed by
a classical formula with tio temporal. operators, which may refer to the location variables ir, the
program variables y, and possibly some global variables.

Let

.4, a

I

be a transition in process Pj for some j 1 I, ... ,m. With each such transition we associate the
location transformation. function r. given by:

i .e ., t h e v a l u e o 2r ; i s r e p l a c e d b y t , .w h i l e t h e v a l u e o f e a c h N, i j , i s u n c h a n g e d . T h i s

transformation denotes the change in the vector T when transition a is taken, much in the same
way that f. denotes the change in y when a is taken.

The notation we use to express the location change as a transformation underlines the similarity

as:between the location and program variables. This leads to the possible description of a transition

) t 0)- [(=;) := (r.();f.()) -
property Q(r'; V) is said to be inductive for P if the following verification condition holds

for each transition a in P:

V0 : [att Aca() A Q(W;Y)] Q(r0 (W); f(y)).

Intuitively, Q is inductive if it is inherited along every transition i.e., ir it was true before the

£ 'transition and the transition was enabled, it will necessarily be true after the transition. Note that

the verification condition is classical, in the sense that it contains no temporal operators, and can
, ,therefore be established using classical proof techniques.

Our proof rule for invariance may now be formulated as follows:

3

The Invariance Principle

Let Q(w; V) be a state property of a program P such that:

1. Q is true initially; i.e.,

I: [atto A 4lH : Q(W; fo(Y))

holds, where o - (t, M.., £) the vector of initial locations.

2. Q is inductive for P; i.e., the verification condition

V.: [attAc.(Y)AQ(;Y)]j D Q(r.(W);f (y))

holds for every transition a in P.

Then we may deduce

Condition I ensures that Q is true initially, provided we restrict ourselves to inputs Y satisfying 9
and condition 2 ensures that once Q is true it remains so. The conclusion is that Q is invariantly
true for all (P, p)-computations.

Note that this proof principle reduces the proof of a temporal formula of the invariance class
into a classical proof or a set of formulas, namely the initial condition I and the verification
conditions V.

The principle of invariance described here is the most general method known for proving
invariance properties of concurrent programs. It can be shown to underlie all other proposed proof
methods for invariance properties.

111AGMA'IC CONSIDERATIONS IN Cl'CKING FOR INDUCTIVENESS

In principle, when checking for the inductiveness of an assertion Q one has to check the
verification condition V for all transitions a in the program. However, in practice, we can im-
mediately discard many transitions as automatically preserving Q, based on syntactic considera-
tions alone.

If the property Q does not contain any of tLhe location variables 1r, then the required verification
conditions Va are reduced to

V': [c. (Y) A Q(F)j : Q(1.(Y)).

In particular, V' is trivially true for any transition a where f. does not modify the variables on
which Q actually depends.

A typical case is that of semaphores. We have the following property:

The Semaphore Variable Rule: For a semaphore variable V,
4

if its initial value is a nonnegative integer
and if it is modified ornly by request and release instructions,

then
. O(y _ 0).

The only two instructions that may modify the value of a semaphore variable are:

request(y), which is equivalent to

V > 0- (y : 11

and release(y), which is equivalent to

true -* [:=y+ 1]

For the request case the verification condition is

[(> 0) A (y _ 0)] D (y- I > 0).

For the release transition the verification condition is

[true A (y > 0)] D (y + 1 > 0).

Both conditions are trivially true. Thus, since the initial value of the semaphore variable y is
nonnegative and it is modified only through the semaphore instructions request(y) and rclease(y),
it follows, by the Invariance Principle, that y is invariantly nonnegative, i.e. 0 O(y > 0).

For another example, let us consider a typical assertion of the form:

Q(W;) at L :3 0(),

where L is a set of locations in Pand # does not depend on the location variables. For an arbitrary
transition a of the form

-C (y(y:=f 0 JL

the verification condition is

Vo {c.(F) A f(t E h) D O(F)I} D [(I' E I,) D

or equivalently,

{c.(F) A [(t ') V ,(,)] A (' E L)}

There are three cases to consider.

5

Case: t' ' L (outside or leaving L). Then V. is trivially true, since the antecedent of the
implication is false.

Case: t 9'L, t' E L (entering L). Then V. is reduced to

Case: 1, ! E L (within L). Then V. is reduced to

[c.(Y) A4(.)] D (f.)()).

Thus, we only have to consider a's which fall into the two latter cases.

EXAMPLE: CONSUMER-PRODUCER

Let us illustrate an application of the invariance principle to the Consumer-Producer program
(program CP of [MP2I).

b:= A, s:a 1, cf =0, ce := N

to compute yl m0 : request(cf)

t j1: request(ce) m,: request(s)

t2: request(s) M2 :Y2 head(b)

t3 :t := boy, : t2: tail(b)

£4 b:= t M4 : b: t2

t :. release(s) Im 5 : release(s)

t6 release(cf) m 6 : release(ce)

S 0go to t o M7: compute using 12

mg : go to mO

- P, : Producer - - P2 : Consumer -

The producer P, computes a value into y1 without using any other program variables; the
computation details being irrelevant. It then adds 1yt to the end of the buffer b. The consumer P2

removes the first element or the bulTer into 12 and then uses this value ror its own purposes (at
m7). It is assumed that the maximal capacity or the buffer b is N > 0. The 'compute using Y2'
instruction rererences Y2 but does not modify any of the shared program variables.

In order to ensure the correct synchronization between the processes we use three semaphore
variables: The variable s ensures that the accesses to the buffer are protected and provides exclusion
between the sections (£3, 14, t5) and (M 2 , m3, in 4 , ms). The variable ce ("count of empties") counts
the number or free available slots in tie buffer b. The variable cf ("count of fulls") counts how
many items the buffer currently holds.

LL 8

The initial condition is given by:

atto A atmo A (b=A) A (a= 1) A (cf-0) A (ce=N)."

We will use invariances to prove several properties of this program.

First, we observe that due to the semaphore variable rule

(1) (>) A (cf O)A(c > 0).

Mutual Exclusion

V The exclusive access to the critical sections

: L =-- 113, t4, t5)

M m2 ,M3,m4,M 5 }

can be expressed as:

M rJ-(atLAatM),

i.e., it is never the case that 7ri E L and Ir2 E M simultaneously.

Since only one att and only one atrmi can be true at a given instant it is sufficient to prove:

(2) I sO[(atL+ atM) < I].

Note the mixed notation that treats propositions as numerically valued with true -- 1, false = 0.

Formula (2) states an invariance property. It will be proved by showing the invariance or the
assertion:

Q,: atL+ atM + s = 1.

By the invariance principle we have to show that Q, is true initially and that Q, is inductive for
P.

Initially, we have that s = t and-that atto = atmo = I which implies that at = atM = 0.
Thus the left-hand side of the equality in Q, evaluates to I and we have that Q, holds initially.

Next, we have to check that Q, is inductive, i.e., preserved by every transition in 1-. Front
inspection of the variables on which Q, depends, it is clear that it is sufficient to check the
transitions that either modify s or modify the at L or at M propositions. The only candidates for
modifying Q, are therefore the transitions t2 -* t3, -t6 , Mn -* M 2 , and ms --- m 6 .

Take, for example, the transition 12 - 13. Going through this transition changes at h from 0
to I increasing the sum by 1. But, as s is decremented by 1, the sum remains constant. Similar
checks of the other transitions will show that they all leave the sum invariant. This establishes the
inductiveness of Qg.

7

We may therefore conclude by the Invariance P'rinciple that

D Q1

i.e., Q, is an invariant of the program P.

The combination of 01Qj and the semaphore property 0(s > 0) implies property (2) that
proves mutual exclusion.

Proper Management of the Buffer

||ere we would like to show that

(3) 0 0(0 < JI < N),

i.e., the buffer's maxinumn capacity is never exceeded throughout the execution and no attempt is
made to remove an eleruent from an empty buffer.

We first establish the invariance or the following inductive assertion:

Q2: cf + ce + att 2 ..6 + atmi.. -= N

We use here our abbreviaLed notation, where at f2. 6 stands for at{f 2 , , 6 }, i.e., 7r {2, .. , f6 },
and atr.. r, stands for at(ml, . . . ,m6}, i.e., 72 E {m, - . . , r 6). As before, the whole conjunc-
tion is interpreted ariLhmetically: I standing for true and 0 for false. 13y inspection of the relevant
transitions we verify that Q2 is indeed inductive and initially true, and thus is invariant, i.e.,

Q2--

Next consider another necessary invariant assertion:

Q3 : cf + atf 5 ,6 + atn1 ..4 = IbI,

where IbI is the size of the buffer b. To establish the invariance of Q3 we have to also establish the
invariance of

Q4 atf 4 (It, = IbI + 1)

and

QS arm 4 D (jt21 + t = IbI).
We will check for the joint invariance of Q3, Q4, and Q5 and establish N I(Q 3 A Q4 A Qs).

The conjunction Q3 A Q4 A Q5 is initially of the form (0 = 0) A (false : ...) A (false D ...) which
is clearly true.

In order to check the inducLiveness of Q3 A Q4 A Q we must check every relevant transition
or the program CIP. Let us consider two Lypicatl transitions:

: St 8

*b m

13 --4 14:

Qa and Q5 are not affected at all. In Q4, both att 4 and It,1 I lbl + I become true on this
transition, so that Q4 is true after the transition.

4 -- t:

Here, Q3, Q4, and Q5 are all affected by the transition and we would like, therefore, to
illustrate the proof of a verification condition along this transition in greater detail. The verification
condition is:

jat 4 A Q3 (ir;) A Q4 (i;Y) A Qs(3F;y)

D I Q(r(f); f(y)) A Q4(r(r); f(y)) A Qs(r(w); f(y)) I

where

r(Ir, 7r2) = 1r i 2)

f (b, s, ci , ce, tI, t 2) = (tI, s, cf, ce, t 1 , t 2).

The proof proceeds in the following steps:

1. at 4 given

2. att 5,6 = 0 from t

3. cf + atmL. 4 = I by Q3

4. It,I = lbl + I by Q4 using 1

5. cf + I + atML 4 = Ibi + I by adding I to both sides or :i

6. cf + (4, E {15,16})+ atma 4 = ltI from 5 using 4

7. Q.(r(w); 1)) by definition of r and f using Q3

Consider next Q4 ((0); f(y)):

8. (4 = I (It I + 1) ta,,tology

9. Q4 (r(jr); f(y)) by definition of r and f using Q4

As for Qs(r(iT); (y)):

10. - atm 4 by I an(d mutual exclusion (2)

11. atm4 D (It4l + I It I) from 12

12. Q5 (r(w);f(y)) by definition of r and f using Qj

",9

a

This concludes the proof of the verification condition for transition t4 -- 4. Therefore Q3 AQ 4AQ 5
is inductive along the transition t4 --+ t. We cal similarly check that it is inductive along all the
other transitions.

Thus we have established:

r 0(Q3 A Q4 A Q5).

Let us now proceed to infer the proper management of the buffer b, i.e., -(O < IbI N).

First observe that by Q3, JbI is equal to a sum of variables all of which are nonnegative. Thus
we have

I 0(Ib > 0).

On the other hand we have by Q3 and Q2 that

Ibi- cf

= atf 5 ,6 + atrfll..4

< at12 6 + atml.6

= N-(cf+ ce)

The first equality is a direct consequent of Q3. The inequality results from the fact that {, 6}
is a subset of {12, . .. , e6 } and {n,, ... m 4} is a subset of {m, ... ,m 6}. The second equality
is a direct consequence of Q2.

Thus, we have

IbI - cf < N - (cf + cc)

which simplifies to

jbj < N- ce.

Since ce is a semaphore variable we have ce > 0 which gives

SD(Ibl < N).

Thus we conclude that property (3),

11 0(O < Ibl < N),

holds.

10

Comments

e Modifying the program

The need ror the auxiliary invariants Q4 and Q5 resulted from the splitting of the statements
concerning b into several statements according to the single-access rule.

Having first established the mutual exclusion of the regions L = {13, t4A, } and M

(m2, • • •, m} we can observe that b is not really a shared variable, in that only one process at

a time can access it. Correspondingly, we could transform the program, after having established
exclusion, by replacing

13: tj :=boy,
t4: b := tj

by

t'3: b:= boyj

and

M2 :Y2 head(b)
M3 :t 2 tail(b)
M4: b := t 2

by

M2 (V2, b) :- (head(b), tail(b)).

This would greatly simplify the subsequent analysis by making Q3 directly verifiable without using

Q4 and Q5.

Using virtual variab.les

Instead of introducing the auxiliary invariants Q4, Q5 it is possible to (lefine a virtual variable
b* by:

b* if al 4 then tj else (if atm 4 then t2 else b)

and then directly prove a modified version of Q3:

SQ* : cf + at 4..6 + atm,. 3 = jb*1.

The variable b* represents the intended value of b, where we use tj (i 1,2) instead of b if b is
about to be changed to ti. Because we are focusing our attention on the value as soon as it is

obtained, we have modified Q3 by extending the region {15 , 6} into { 4 4, 4 } and contracting
{m,,m 2 ,r 3,m 4} into {mt,m 2 ,m 3).

A SYSTEMATIC SEARCll FOR LINEAR INVARIANTS

In order to dispel the illusion of "magically" drawing the invariants QI, Q2, Q3 out or thin

air, let us describe a method for a systematic search for such invariants. (See also [lRA], ICIA].)
• I1

An invariant of the forim discussed here is cQmposed of three parts, such that the sum of the
first two is equal to the third. We represent such an invariant by:

(B + Z) = C.

(a) B is the body of the invariant and is a linear expression in the semaphore variables and
other variables which are incremented by constants (linearly) during cycles in the program.

(b) Z is a sum of expressions of the form irj C L for some region L C L- and will be called a
compensation expression.

(c) C is a constant.

We start constructing such an invariant by finding an appropriate body.

(a) In the body we look for a linear combination of variables E = -]aiy such that the net
change in each cycle or each process is 0. Obviously, we restrict ourselves to cyclic programs, i.e.,
non-terminating programs, in which each process eventually returns to its initial location to and to
variables whose change along a cycle is constant and independent of the prograi flow. Semaphore
variables usually have this property.

Let us denote for these variables the net change in yj resulting from a full cycle in process I'-
by Aq. Then our combination E = ajyj should satisfy

AYE = >EajA" =0

for j, 0 < j < in. That is, we require that the value of the expression remains unchanged as a
result of a complete cycle of each of the processes.

In our con uier-producer example all our variables are linearly increlriented and we have the
following table:

?A' =o0 A. ==0
2 = -t

A2 =l.

We look for a combination

E = a,.s+a2 .IbI+a3 .cf+a 4 .ce

such that , ajAj = 0 for j - 1, 2. This yields the set of equations

a. 0 + a2 + a3 - a4 = 0

a, .0 - al - a3 + a4 = 0.

We will be interested in a nontrivial set or independent solutions to these equations.

12

In this case the equations possess three degrees or freedom, and hence three linearly indepen-
dent solutions are possible. The exact choice is irrelevant and we pick the following:

1. a, = 1 a 2 =a 3 =a4 =0

2. a3 =a 4 =1 at-=a 2 -= O

3. a2 = a 4 = at-=a 3 = O.

Thus for the following independent linear combinations, the net change in each cycle of each process
is 0:

i Bi: s

B 2 : cf + ce

13: bI + ce.

Note that B and B2 correspond to the bodies of Q'I and Q2 respectiveiy, while /13 is a different
invariant which will enable us to derive tie same conclusion as the combination of Q2 and Q3. For
the choice a, = a4 = 0, a2 =-1 and a3 = 1, we could get B13 : ef - JbI which corresponds to
Q3 itself.

(b) Having a body B, to derive the right-hand side C or the invariant, we only have to substitute
the initial values implied by V(z) into tile body. l)oing this for our three |nvarianis we obtain:

C,:

C2 : N

C 3 : N.

(c) Next, we determine the compensation expressions. Consider a given C and I?(yj) and a process
Pj with locations {to, . . . , t,}. Since we assume cycling, 1, is not a terminal locaLion but branches
back to to. ly our assumption, the changes in 11(y) can be traced and are constant. Denute by
Bi(y) the value of B at location ti, i = 0, 1, ... e in the process, and let

Then the compensating expression for process P is given by

z = 61 . (att).
: i==O

For example, to evaluate 6i for B, = s in /P, above we have to compute:

slatt ° - slatt i .

Assuming that P, is operating alone, (which is the basic assumption in the coiniputaLion of thle 6,,)
we take the difference between tie value of s at 1i and its initial value at to. Thus, we have

bo = 61 62 = 66 =57 = 0,

13

since when P, is being executed alone the value or a at locations 10, t, t2, t6, t7 is equal to the
value of s at 1o, i.e., s = . Moreover,

b3= 64 = 65 = 1;

since when P, is executing alone, the value of s at locations 13, 14, t5 is smaller by I than the value
of s at to. Ilence, the compensation expression ror the body s in P, is

ZI = at t3 + at t 4 + at I5 .

Computing the compensation expression Zi for the body 1? for each process Pj we form the
full invariant:

in

B+E ,j = C.
j=1

For the three bodies we considered, we obtain the following three invariants:

11 : s + at 13.5 + atm 2..5 = I

12 : f c cc + at t2 + atmL.. = N

13 :Jb + cc + att2 ..4 + atm 5 ,6 - N.

Note that Qa can be obtained by forming the difference 12 - 13.

This method or deriving invariants has the a(vantage that no fiirlher proof is needed; indeed,
any invariant deriv(d by the method is automatically a true invariant of the program. IHut it
May nily be applied to variables which are modified by a constant in atomic instructions, or to
programs which can be transformed so as to satisf'y this restriction.

EXAM'IL]: Hl NOMIA L COEI,'-ICIlENT

Consider next the program BC ([MI'21) for the distributed computation of the binomial
coeffeient (-) I'or input paramelters n > k > 0.

I'rogram IICI (Binomial Coellicient first version)

yj := n, Y2 ::=O, Y3 :1, Y4 := I

to: ify = (n - kJ then go to t MOo ify2 = k then go to 7n.

t1 : rcquest(y4) m : Y2 : Y2 + I

12: t1 :=-Y3- Y 12 : loop until yj + Y 2 n
3:: . :I t n:: re'q ,.4t(y 4)

f4 rclhas(.'(Ya)" Mrt4N: Y31Y2

t5: Y: :=Y- I Y3 -

16: go to to rn 6 : rlCasC(y4)

t. : halt m7 : go to mO

m. :halt

1'2

14

The task of computing the binomial coelficiept

(n)~ n.(n- I). (n- k+ 1)
k1 .2

is distributed between the two processes by having P, perform all the multiplictions while P2 is
in charge of the divisions. The values of y, , i.e., n, n - 1, . . . , n - k + I, are. 11.11(d to coliiite
the numerator in P, (the last value or y, n - k, is not used), ard tie values or y,., i.e., I, 2, ...,

k, are used to compute the (dnollin. ator (the first value or Y.2,0, is not used). lrhe two processes
must syncltronrize in order that the accumulated product be evenly divisible by tre, divisors used

at m 4 by P2 . This synchronization , realized by the waiting loop at m"2 which s'srri:rlly rIsrrres
that execution will proceed to m 3 only when at least Y2 factors haV(ben 1Iritiplie.d inLo Y3.

We rely here on the nmatheiiatical theorem that the product or i 'on.ecjtiv, positive integers:
k • (k + I) . (k + i - 1) is always divisible by i!. For, consider the irterriedi te expression .at

M 2:

n. n- I. (n- i+Y3 7 .:- ;--

where I < i < j < n, Yr I n - j and Y2 i. The ,interator ('osist.s of a irirlti, iliat ir or io

consecutive positive integers and it is therefore divisible by i. If j = i, we iave h) wail mrt,il yj
is decremented by the instruction in t, rrom n - i + I to n - i before we (:ur hi :rIsi ly hiiv tri re

that (n - i + 1) has been mutltiplied ito Y3. Thus, IVrocess P wails at m2 11itil .l + y 2 drops to

a value less than or equal to n.

Tie critical sections 1, { ,12,3,f) and M = {?n4,,,Yirh} , protected I)) the inaphore

variable Y4, ensure exc'lusive access to the share(variable y:. Not r that tIis pro Igrar sat islics tire
single critical access rule ((MlI'21) since for example il tihe expression Yr + 2 appearirg at r 0111y

Y, is critically accessed.

The invariant

Io : atl12 -4 + at rn4 + y =z I

ensures the mutual ex'lusion or the critical sections. It is verifiablh by the irvari:rrrie prirlii.i ill

the usual way.

Once this exclusion is 'stablished we can trairsrornm this prograrrr to a sirrph-r progra i I('

such that there is a faithfri correspollniet'le b('wt weell execut ions of /'('I :11id e"x'lltiii inS o' l"('.2

This implies that the corrtetness (r Itc will follow fronir that of 1('2.

Program I(, (Ilinoinial (Coeficient second vers:on)

Yl := n, U2= O, Y3 := I

to :ify = (n - k) then go to 1. tro: if y2 - k then go to m,

t1 : Y3 Y- I Y2 Y2 + l

12 : Yl - I rn 2 loop until y .P2 4 Y

13 go to fo M3 : :-- Y3/1Y2

1, halt "74 go tom en

ra : halt

Il I ',
IS

Next we introduce two virtual variables:

y2 = if at m2 ,3 then y, - I else Y2.

The rced ror the virtual variables is similar to that of t.he compensation expressions discussed
above. The main invariant on which the correctness of the program is based is 13 below

Y3 n["(n- l)...(y* + 1)1 I 1.2.. .*

which ties together Yl, Y2' a1d Y3 (or their virtual versions). It is invariant in the sense that it
is preserved al't /, Y2 and Y:3 has each Iren i)roperly updated. Ilowever since the updating of

y, arid ya in I' ror example cannot occur simuultaneously, we (deline y* which is the anticipaLed
updated vahi' of yj as soon as y3 is Updated at fl. Sinilarly, y* differs from Y2 between the
updating of y2 arid ui, jp(iatir g or Y3 in 2..

We use th r tollowing invariants:

1, [(n - k - atfl,2) _ Y1 _ -it A [0 < y2 < (k - atmI)]

12 : atm:j D (YI + Y2) < n

13 y, - [n.(n I)... (y* + I)I / [I .2 ... 2

In 13, the product of a zero mimber of terms evaluates to I.

The initiality of Ii to I is easily e riliable.

The two parts or Ir can be erilied S(');Lr:tt'ly by considering the transitions f0 f, '2 " 13
and Iit0 --+ rn -,rit nIs rn ,cc.ively.

To verify /-, we observe that, on er ntering "13, Y1 +Y2 < ?I holds true. Any possible ', transilion
while I2 is at m., can only (h('riase tihe valm- or1" Yr + Y2.

Consider niow tOrw vvril.atin orf 1:1. The oily relevait transitions are, --+ 12 and M 3 --+in 4 ,

Demrotinig thre val rs of tOw variables after tihe transition by Yi y, y, respectively, we obtain for
fr -. l:

y3 :- t"'("-Il)...(y; + i)/Ii -".-/j

::4 y:, , i/ [,,.(n - I).. (i4 + i). fl /l "I '". y;I
as at fi,Y! Yi

= In.(- +)...(]' +) 1.2... 1I.

Simrilarly for the, 711:4 -, flj., Ir isition:

l;r l. (. - I)... .(y, +))/ /11 -.2 ... i~l

=4 .1 / Y- / [i2 (n (y I) fy I [I -[2 .. (y* +lj

1i

as at m 3 ,y 2 -2* +1

y3 In [(n - 1)... (y* + 1)] 11 2 2... yf].

The even divisibility of Y3 by Y2 at M 3 is ensured by the fact that by 12 we have that

YI < , < n - Y2.

Thus the number of consecutive factors in the numerator ofY3 is at least Y2 which is evenly divisible
;, :1by Y2!

PROVING EVENTUALITIES
I,

IHere we will consider general methodologies for proving properties or the form

in PD 0Q.

Many of the cases that we will study focus oil a special kind of eventualities called accessibility
atatement. Its characteristic form is

att D 0 at '

guaranteeing that being at I we will eventually reach 1'. In more general form it can appear as:

(art IA D) *(at t' A €)

where we associate a pre-condition 0 with the visit at f and a post-condition 0' with the visit
at '. The Intermittent-Assertion Method (see [iIJR], [MW]) uses this implication as the basic

statement for reasoning. Many useful eventuality properties are representable in this form. In this
discussion we assume that t and t' belong to the same process. It is however possible to consider
generalizations in which this assumption may be relaxed.

Our approach for proving eventuality properties, called proof by eventuality chains, is hased
on establishing a chain of eventualities that by transitivity leads to the ultimate establishing of
the desired goal (see also [OL). The main transitivity argument used here is:

Some common techniques that we use in our proofs are:

* We split a situation into sevivral subcases and pursue each case to its conclusion.

* To establish implications of the form

we use induction

it 0(0) D 0' and I= Vn.[,(n) D 0(0(n-I)V')J I- - (3k.,k(k)) D 01.

17

9 We frequently establish ra 0 0 c> ,' by contradiction: we assume A 0 --' and pursue the
consequences of this assumption. If we succeed in showing

I1 A 0 -0'] D false,

then we will have established our desired result. This technique is particularly useful in
the verification of a statement of the form

att D 0'-att

in concurrent systems. The reason for that is that by assuming 0 ati we are momentarily
(for the duration of the analysis) halting one or the processes at t and have only to
analyze the possible movements of the other processes. TWhs usually results in a significant
simplification.

We start by presenting an example with an informal proof of its correctness relative to
accessibility.

EXAMI'LE: MUTUAI EXCLIUSIO"I IOtLK#, i 1) INFORMAL I"ROOFS

As a first example, consider the solution to the ,mutual exclusion problem that was first given
by)ekker and described in ([I)I.J]). lere, we assume a shared variable t that may be modified
by both processes and two private boolean variables Yi and y,2, each being set only by its owning
process but may be examined by the other.

Program DK (Mutual Exclusion - Dekker's Solution):

t := I, Y2 := F

to : execute me : execute

1 : YJ :=7' in: Y2:=

f2 : if(2 = !") then go to e 7 rn 2 :if (y, ') then go to m7

t: if(t= I) then go toe 2 Mi3 if(t =-2) then go to m2

t 4 : Y/i:= M4 n: Y :=F

t, loop until (t= 1) M 5 : loop until (t =2)

16 : go toe 6M 6 : go torM!

I t7 t:= 2
n7 : t=1I

es: Y,:= I [ms: y2 F:

f9" go toe 0 tom: go to mo

The variable V, in process I, (and y2 for P2 respectively) is set to 7' at tf to signal the intention
of Pi to enter its critical section at 67. Next PI tests at e2 if 1 2 has any interest in entering its
own critical section. This is tested by checking if Y2 = '. If Y2 = F, PI proceeds immediately to
its critical section. If Y2 = ' we have a'coil)etition between the two processes on the access right
to their critical sections. This competition is resolved by using the variable t (turn) that has the

18

value I if in case of conflict P, has the higher priority and the value 2 if P2 has the higher priority.
If P1 finds that t =. it knows it is its turn to insist and it leaves yj on and just loops between 12
and 6 waiting for V2 to drop to F. If it finds that t = 2 it realizes it should yield to the other and
consequently it turns Y, off and enters a loop at t5, waiting for t to change to 1. It knows that as
soon as P2 exits its critical section it will set t to 1 so it will not be waiting forever. Once t has
been detected to be 1, P, returns to the active competition at 12.

We will proceed to prove for this program both mutual exclusion and accessiblity. They
are complementary properties in this case. The first assures that the two processes cannot simnul-
taneously enter their respective critical sections. The second assures that once a process wishes to
enter its critical seOtion it will eventually get there.

Mutual exclusion

To prove mutual exclusion we show the joint invariance of the following three assertions:

Q, : (y I T) at{t2,,,t 4 , 6,18}

Q2: (y2 - ') at{7f2 ,m,m 4 ,m 7 ,ms)

Q3 : -at{t 7 ,t8} V -at{m 7 ,m 8 }.

That is,

r I(Q, A Q2 A Qa),

where the initial condition is given by

ato A atmno A (t = I) A (YI -Y2 1).

The inductiveness or the first two assertions is easily checked by considering the different
transitions in each of the processes. They certainly hold initially.

To show the invariance or Q3 which is the statement or inutual exclusion consider the possible
transitions that could potentially falsify this assertion.

One such transition is t2 -* 7 while at{m 7 ,ms}, Ilowever by Q2 , at{rn7 , ns} implirs y2 = 7'
so that the transition 2 -- 17 is disabled. Similarly for the transition rn 2 rn 7 while at{17, fH}.

Accessibility

Accessibility in this program is given for 1, (the case for P2 is similar) by

In att, D 0 art7.

The process P, signals its wish to enter tlhe critical section by moving from to to ti. We then

would like to prove thAit it eventually reaches the critical section at t7.

- -

In analyzing this program we have to interpret the execute instructions at to and mo as a
non-critical section. Consequently we cannot assume that being at t o we will eventually get to ti.
Hence the transition graph representation of the ezecute instruction at to (and similarly at ino)

should be represented as:

true -

true I I[

That is, there is a nondeterministic choice between staying at t o and proceeding to ti.

We will proceed to prove

Theorem: I ate! D 0 att7.

Here we will present an informal proor of the statement, followed by the justification of some
of the steps used in the proof. Motivated by recurrent patterns in the informal proor we will then
introduce proof principles that could be used to construct a formial version of the same proof.

The proof or the theorem consists of a sequence of lemmas.

Lemma A: 0 [ate: A (t= 1)1 D 0 ate7

Proof of Lemma A:

Assume to the contrary that Pj never takes the e2 -- e7 transition; then henceforth

O[(atf2 V at^) A (t = 1)]

since the only instrucLion assigning to t a value different from I is at 67 and as long as t I 1 and
the transition 12 -+ 7 is not taken, PI is restricted to {2, t3}.

Under this invariance assumption at{Y2 , W3} A (t = I), let us check the locations of P2 .

case a: 1 2 is at mr). Then Y2 = F and] will stay so. By rairness P, must eventually get, to t2

and in the next transition out of t2 roust go to 67 (Y2 being P,). Thus

re atM5 D 0at1 7 .

case b: P2 is at rn 4 . Then by the fairness requirement it will eventually reach m 5 so that by
case a

I at m 4 J 0 at 7._

case c: P2 is at "13 . Then in the next transition out of 773 , t is still I so ithe M4 branch must
be taken. Consequently by case b

PE atm 3 D Oat t7.

case d: l'2 is "Xt in2 . Then since, by Q1, (atff 2 V at! 3) 1 Y = 7', and since we assumed that
1), is restricted to {2,f:}, the next transition of P2 will take us to "13 . Thus by case c

20

also have

p atm 2 D * at t7.

case e: P2 is at ml. Then obviously eventually P2 will reach irn2 so that by case d we have

P atmj D O at7.

case f: P2 is at in 6 . Then eventually P2 will get to mt, so by case e

i atm 6 D *?att 7 .

case g: P2 is at moo. Then either it will stay in mo forever or eventually exit to ml. In the
case that it stays in rno forever we have by Q2, I(Y2 =- F). Thus in the next transition
out of t2 we must proceed to 17. Otherwise P2 will eventually get to mi which by case f
leads again to att 7. Thus in any case

is atmo D *> at17.

case h: Obviously by fairness

0 (atm7 VatmsVatmg) D Oatmo,

so that by case g, any of these cases also leads to the eventual realization or at17.

Thus by analyzing all the possible values or 7r2 in P2 we showed that atf 7 is eventually realized
in any or them. Consequently we have that

i [atfa A (t = I)] D 0 at 7 .

which is the desired result or Lemma A.

Lemma B: 0 [at{t3, . .. 6,} A (t = 2)] D - at{ms, mg, mo}

Proof of Lemma B:

Consider first the invariance of the following s~atement:

Q4: (t =--2) D)- alms.

The transitions which may possibly falsify this statement are:

9 17 -+ tg while P2 is at ms. However, due to Q3, aWl 7 A atms is an impossible situation.

0 M7 --+ ms while t = 2, but the transition sets t = 1, so that Q4 does hold after the
transition.

Ilaving established in 0- Q4 we proceed to establish in 0 Q5 where

Q5: fat(13, ... ,la} A (t= 2)] --at{m9,rno}.

21

Let us investigate the transitions that could possibly falsify Q5. The relevant transitions are:

0 12 --* 13 while at{m 9 ,rno}. However by Q2, at{mg,mo} implies that Y2 = F which disables
this transition.

* m 8 -) m9 while t = 2. lowever in view of Q4 the situation (t = 2) A atm8 is impossible so

that the transition is also impossible.

Taking the conjunction of Q4 and Q5 we can infer the result of Lemma B. I

Lemma C: is att 5'D 0 at 17

Proof of Lemma C:

- If we are at 15 there are two possibilities. lEither we will eventually get to 16 with t - I or we

will stay forever ill f5 with t = 2 continuously.

In the first case we proceed to gl and reach f2. There we either enter 7 immediately or get

to 3 with t == I- The valu, of I will Inot change on the way since the only possible change of t

from I to 2 is performed by PI at 17 -* 1s. By lenuna A, being at 3 with t = I ultimately leads
to 17.

The other case is ill which 0(t = 2 A at 1s). By lemnna 11 we have that 0(- at{ms, inq,me}).

Since atfs is permanently true so will be yj = F by Qi.

Consider now all the possible locations of 7r2 in P2 excluding mg, ing, and in0 :

atrm7 will eventually lead us to 7n8 and turn t to t.

atm 2 will lead us to tn 7 since yj I and thet to rr 8 .

atm 3 will lead us to rn2 since t = 2.

atm, leaIls to M 2.

at ftI leads to Ll.

atm 5 will eventually lead to m(1 ;, having t 2.

atm,l leads to n&5 .

o Consequently all the locations in '' evvci, Iually cause t to turn to I and l, will eventually get
out of' f5 anld proco',d to f#3 with t = 1. ILeinia A then establishes the desired result,. I

We are ready now to prove the desired accessibility theorem, that lr at i 0 att 7 .

Proof of Theorem:

IProceed with I' from I, to '. There we either immediately enter ?7 or arrive at 13. Consider
the next instant ill which ', is shediuiled. If t = I we are assured by lemma A that we will

ultimately get to 67. If t = 2 we proceed to t1. and f,, from which we are assured by lem ma C of

eventu ally getlilg to 17. Thus we will ge, to 7 ill all cases.

22

P~ROOF lPRNClPA ,S FO(R l'.lNTrUAu~luEs

In order to present proors such as tire above in a niore rigorous perhaps (eel machine
checkable - style, we proceed to develop several p~roof principles, th'lese will enable us to establish
the basic acccssibility steps ensuring the eventual passage l'roii a location to its successor under
the assumption ol' fairness.

All predicates below are "state predicates" expressed by classical iorruuulas, andl will generally
depend on the location variables if as well as on) the programi variables y.

A predicate O (Ir; y) is said to be X-invariant, where X =X(f; y7), if' ror every tranisition

CM c(17)(Y

the following l'orrnula holds:

[at f A --(Y) A x(ff) A x(r(f);f (y)) A O(f; 9)] OD ~) 9)

That is, 0 is preserved by any transition which p~reserves x.

In all the f'ollowi ng we will use O X to denote that X is an invariat externally given andl
guaranteed to be continiuously true, It will be userul in, cond neting condiitional Jprools.

The Escape Principle for'Single Location

Consider a location t in p~roce~ss PJ. I ~et E {(ka (10 ~ be a set ol' t ransit ions originmating
in t. 1Let t I k be the locations to which the transitions a, - - , Qk 1(':d 'Mnl Ch, - -k thle
en ablinrg conditions associated with a,, (kk, respectively. We do niot reqluiire that b e the set
of' all transitions origi-nating in f.

We require that location t be deterministic, that. is, the condlitions r and r' on! any two dlistinet
transitions (i and a' (niot. necessarily in X) origi natinrg in f inust bi, disjoi nt., i.e. - V -~ c'. Ini all
the programns that we will studly all locations wouild be det'rnuiinist mc except. for thIose' that contain
an execute instruction. We will never apply the escape rule to these locations.

23

S - *%

The Rule of Escape (ESC):

Let q0, X, and V) be predlicates such that:

A: O is (atA X)-invariant.
TIhis mecans that as long as we stay at I and X is preserved, so is 0.

B: Any or the aj, i = t,.., k, transitions of' E that preserves X and is initiated with
Strue, achieves V), i.e., 0, will hold after the transition. This is expressed by

late A ci(,Y) A -j;Y) A x(Jr;yi) A x(ri(jf);fj(y))I D)r~f)f()

for every i= 1, .,k.

C: 0 A X at i ensures that ait least one ci, i 1 ,.., k, is true (the transition is
enabled), i.e.,

k

[atf A O(jf;) A XPw;) D V ci(Y.

Then under these three conditions we m-ray conclude

k= [ateI A 0 A 0x X1 04'

That is, being at t with true and being assured or' the continuous holding of X
guarantees eventual realization of 0,.

To justify the principle consider anl execution which starts at t with 0 true andI continuous
assurance of x. fly condition A as long as P). is niot scheduled we remain at I with 0 A X true.
By condition C this implies that all that ti me i c r is also continuously true. T'herefore by
fairmess eventually P rmust be scheduled in a state in which , k c. all hold. Conscquenib
by determinism of t one of the taj E E~ transitions must be taken and] by condlition 13, V) must be
realized.

There are'some variations arid generalizations or this basic principle which are (lisqussed next.

The Rule of Alernatives for Regions

The first generalization conlsidlers exits out or a region (set of' locations) rather than a singlc
location. This principle applies also to nondoterniinistic locations.

Let 1, C £j be a set of locations in the process P. and E = fat,., ak} the set or all
transitions originatinrg in 1, and leading to locations tk oi (, I uSide of I" i.e., 6' 0 1,

24

-Iki

o,I

The Rule of Alternatives (A-LT):

Let ~, V) be prerlicates such that-.

A: is (at 1LA X) invariant.
This mecans that as long as we stay in 1, arid X is preservedI so is ~

B: Any or the ni, i = 1,., k, transitions or' >. that preserves X and is initiated with
0 true, achieves V5, i.e., V) will hold after the transition. T'his is exp~ressed by:

[at I, A cj(Yj) A 0(!F;) A x(Irl j A X(rd~w); fi(I-))I D O,(ri(w); fjdy))

for every i= 1,.. .

T'hcn uinder these cond~itlions we may concludle:

P [at 1 A 0 A El xJ D 1O(at1,A 0) V 0 V,].

Trhat is, being initially in, /, with 0 true and~ being assured Or tHe COntinuous ho1linig Or
X guarantees that we have two alte'rnatives: either we stay in L. with 0 permanently
true, or achieve4.

Note that since we (Jo not. have any condition similar to C above that guarantees th', eventuial
realization of V), we must also consider the possibility of' remnaining in 1, and satisfying 0 rorever.

To justify the principle, consider ani execution which starts in 1, with 0 true and continuous
assurance of x. i ty conidiiion A as long as we stay in L,~will remain true. Hty condition It once
we take any of. the ai transitlions in this situation 40 will he realized. I lence the conclunsion follows.

Note that the ALT rule can be applied to a region consisting of a single location. Trhus for an
execute instruction:

- ~~- true -

true - - e
a2

25

we may take L = {} and E = {af) to obtain

i att [[atIV~attJ.

The Semaphore Rule

Rule ESC above is adequate (or dealing with locations for which the disjunction of all their
exit conditions (on all the outgoing transitions) is identically true. A location which does not
satisfy this requirement is called a semaphore location since in a semaphore request instruction,
represented by

y> 0 -y :- y- 1

the exit condition Et is y > 0 and is not, identically true, nor is it necessarily continuously enabled.
Consequently rules ESC and ALT are only sulficient for reasoning about programs that contain no
sempahore locations. Once we have semaphore locations we need a stronger rule.

Let t be a (possibly semaphore) location and E = {at, ... , ak} the set of all the transitions
originating in t. Let t ' and c, for i I, ... ,k, be respectively the location to which ai leads and
the condition enabling it.

':~~
(Y)-- [y:-- f,() I Ml

ck () - I II : =

26

The Semaphore Rule (SEM):

* Let X and 4'be state predicates such that:

A: iois (atI AX)-invariant.
This ineans that as long as we stay at t and] X is p~reserved, so is ~

Bl: Any of the ai, i = 1,., k, transitions of E, which prese'rves X arnd is initialed
with 0 true, achieves 4', i.e.., lb will hold after thle transition. This is expressed by:

latt A cj(1) A O~(I;Y) A x(jw;Y) A x(rditi);fd))j D

forcevery i= 1, ... ,kc.

C: If (0 A x) holds permancntly at t then eventually one of the cj, i 1 , , k, will
be true. That is

T[hen undler these Conditions We May COnl~led:

01 (at t A 0 A OX) D ~'

That is, being at t with 0 true and beinrg assu red or thle coniti ious holdin r k
guarantees the eventujal realization ofr' -_____

Note that condjition C or SIEM is weaker than condition C of ECSC in that, it dhoes inot require
Et= VkIc to be true whenever ate A 0 A x holds but only reqir es it. t~o he (eventuially

realizedI. H owever, co nditlion C here is a tern poral statemnrt Iand require,; tern poral ruasoni g for
its justilication, while condition C of ESC is static and requires only classical justification.

To justify this rule consider an execution which startk at f with 0 true anid X\ conitinktotisly
mai ntai ned. Condi lion A ensures that as long as we stay at f, OAX will he tIreserved. It. is mu tj)si ble
that we stay at t forever becauise by condition C this would imnply that 1' = kIC', which is
the full exit condition of' node t, is en abled infinitely often while process P,' is never schbedutled. By
fairness we must have P, schedurled at least once while Ee is true. Tlhis, by co nlli t it B am I thle
permanence until this momnent. Of 0 A at t A x, will caulse! V) to be realized.

It is important to realize the (differences between a "semnaphore location" andl a "busy waiting"
location. For comnparison conisidler the followinrg two si niplified cases:

(a) Semaphore lochtion:

(b) Busy waiting location:

~C-C

27

(a) In Lte semaphore location case Lte fairness requIirement demands that Lte scheduler will
schedule this process at least once while its c condition is true providIed the condition is
true infinitely often. Th'lus for the Sl'M principle which is ap~prop~riate to thig case we only
require that c is realized infinitely often. Tlhis is exactly condIition C which in this case is

Pa O(atfA 0A X) D 0C,

or is equivalently

is O(atf A 0A X) DO c.

(b) For the "busy waiting" situation, since thre exit condition is c V -c =true, the only
obligation that the schleduiiler has is to even tualIly schedule thiis process. 'I'here is however
nothing to prevent. t.1w provess from being scheuled at exactly these instants in' which c
is false. Consequlently, an infinitely often true c is niot sufficient to ensure an exit to t'.
Insteadi we must require a stronger guarantee, that r be pernmanenitly true. Th'lererore, the

corresponing co 111 tion Cror the "busy waitinrg" situation or ti aei

which is equivalent to

la 0(at fA 0A X) DC3c.

Tluat is, ir statying rorever at f guarantees the permanence or c then we will eventually exit
fromn t to t'. TIhis can be derivedi rroin the E-S(C rule.

Since I- Oc -D Oc we have tire rollowing robustness metatheorem:

A program that has been proven correct for an interpretation or its Semapihores
as "busy waiting" locations, is automatically correct for the implementation
of these locations as true "semaphore" locations.

Consider, ror example, the problemn or accessiiiity of critical sections for Lte umutual exclusion
program ME. In the roor' to he given later we will reach the conclusion

is 0at t5 0O(y 134YA)

where the instruction at t5 is

ts:loop white yj = 1J2.

Thus, tn is proof is sound ror the in lerpretaLion of' the loop primiutivye a4 "busy wai tinrg". B y
Ltne rohusnemis nietatneorem any mnore ellicient innllenentation or the loop p~rimitive, in fact any
implementation at all1 which is "just", i.e.' eventually schedules each process, will also cause the
program to behave correctly.

The Single Path Rule

In this dlerivedl rule' we repetitively apply thre lPSC rule to a chain of locations.

28

1CL 11, 1t, .. I2 I he a path of determintitic Iocathiois iii I' With an iImjedi.l,. Irmisilimi

ak, rom every f, to f1, , I, ... ,k.

rl(y) -- 1 := fu(y)I kc(y) [y M -/(Y)

The Single Path Rule (SP):

Let X, 01 k, and k +I = ' I e predicates stuch that:

A: Ea,'h 0, is (al , A x) i nvariant, I = . , k.
This ineans that as hmig as we stay at 1, and k is preserved so is 0,.

13: Each transition or,, i = I, .J. ,k, which pri.st rvex k and is inidiat 1 %%Mi irm

achieves 0, + , that is

tatf, A -,(y) A 0,(7r;,) A \ (r;y) A \(rjir);f,(y))) , (r,(Y);f,(!)).

C: (0b A k) at t, ensiires that c, is true, i.e.,

latt, A 0, A .J D ",.

Then under these three conilitiomis we may conchde

.V (at f,A 0.) A 0~ it 00.

That is, ir we start amywhere in the path with th, approjtriat' 0, tric aid k co'rliit,,I,.ly

rriaift;rirled we ever tially wirld fip havinrg .

This rfle is obviously a gerieralizatioi of ,SC and is jistlihied by ; retl.a.tld appli,:kli t of'

ES. to ti, .. , k (with):, -= {o,}) respectively.

This rule can be somewhat, g(,nieralized to a more general graph thani a pal It. Th, SI' p ri iple

also applies instead to a tree in which every node has ai edge directed towards its at t or.

i This conchides thie list of semantic proor rules reflectinog the strutr, of' Ohf, pro lra i and its

uicllhence on the possible executioni sequelces.

S* * * * $

In the rollowirig "formral" prools of eventiality properties, we will intetionally oMit n1:11liptila-
tions which are puire temporal logic dedli(tiouis, since, we have rot ind'id.ed an axiomati' systen for

temporal logic in this paper. Instead we will justify these d(,ehictions by saying "temporal reason-

ing" or "temporal ded|ictio||." The reader is invited to convince hirnis'lr sermartih'ally that these

dedtictions are indeed somind, that is, any sequence that satisfirs the p rermises ftliist .lso sat isfy the
consequience. l'hus otir proofs will consist,, similarly to regidar proofs, or a seyquenv.e of termporal

formulai; wi th a ju|st.iilcation for each lin e in the sequence. A li ne in a proor may be j nst.i[lfed in
one or the following ways:

29

(a) If it is a valid first-order temporal logic formula.

(b) If it is ain instance or one or the proof rules above.

(c) If it is a logical or temporal consequence or some preceding lines.

Given a dedu'tiv. systemn for our logic (see [MAN2]) we will be able to justify steps or the
forrii 6 and c usil.r 114 axiommis amd rules of inference. Alternatively, c steps can be justified using
a decision| procedure for validity iii (prol)ositional) temporal logic ([I MI]). For our purpose of
presenLii|g proofs t. a level which is not too forulnl, yet displays sullicient detail to be convincing,
the styl, or semantir prools seeims most appropriate.

Note that our only reference to the progranl itself is through tie proor principles ESC, Al[,
SEM and SI'.

In presenting lormal (senianlic) proofs we will work our way gradually through examples that
use only the ,S(anld S rules first, then examples that use also tile ALT rule and finally examples
using semaphores ajid the correspondimig SEM rule.

EXAMIPILE: COUNTING TREII NOI)ES

Consider first tIhe use of cventuality chains in proving the total correctness of the sequential
progran TN for counting the nodes of a binary tree.

Program TN (Counting the nodes of a tree):

S := (X), C :=O

to: i S=() then goto 1.
t, (Tr, S): (hd(S), ti(s))
12: if T = A then goto t0

6 : G:=C+l
14 : S :(T) -r(T)S

t5 : goto to

t. halt.

The program operates on a tree variable T and a variable S which is a stack of trees.. The input
variable X is a tree. The output is the value of the counter C. Each node in a tree may have zero,
one or two descendants.

The available operations on trees are the functions f(T) and r(T) that yield the left and right
suhtrees of a tree T respectively. If the tree does not possess oil(or these subtrees the functions
return the value A.

'rile stack S is initialized to contain the tree X. Taking the head and tail or a stack (functions
hd and tl respectively) yields the top element and rest of the stack respectively. The operation in
L1 pops the top of the stack into the variable T. The operation at t4 pushes both the right subtree
and(the left subtree of 7' onto the top of the stack.

At any iteration of the progran, tre stack S contains the list of subtrees of X whose nodes
have not yet been counte((. Each iteration removes one such subtrec from the stack. If it is the

30

A

empty subtree, T - A, we proceed to examine tile next subtree on the stack. ir it is not tile empty
subtree we add one to the counter C and pushes tile left and right subtrees of" ' to the stack.
When the stack is empty, S = (), the program halts.

Denoting by IXI tile number or nodes in the tree X, the statement to be prove(d is rorriulated
as

Theorem: in atto D c'(at. A C = IXO).

In order to prove the theorem we first prove a lemma:

Lemma: 0 [atto A S=t.s A C=c D 0[atto A S=s A C=c+tIJ.

The lemma states that being at t o with a tree t at the top or the stack S, we ;are assured of
a later visit at to where t has been removed rrorn the stack and its node count It j has beern added
toC.

Denote by I(u) the statement:

E(n): Vt,s,c{[atto A S=ts A C=c A Itl< nl

Oflatto A S = s A (= r + Itll}.

This statement is the restriction or the lernma to trees with node ('ourut not exceedirg ?i for sonie
natural number n > 0.

Proof of Lemma:

The lemma can then be stated as Is Vn. E(n); it is proved by induction. We hav, to show

(a) P- I(0)

(b) rn E(n) D E(n + 1).

(a) Since t. s 3 () and Itl = 0 i t = A we may apply the SI' rule to the path o - - -- to
and obtain

1. 0 [atto A S=ta A C=---c Itl==o D

Olatto A S=s A C =c.

This establishes 0 E(0).

(b) To show is E(n) D E(n + I), consider an arbitrary n, n > 0, and assutie

2. 0 E(n).

Then

3. i iatto A S=t'.a' A C=c' A It'l =n+iJ 1

<*[atfo A S= tt').r(t') s' A C =' + I A It'l = + I
31

by the SP rule applied to the path to "-*4 -* 12-43--4- -t
t o, using It'l =n + 1 D e

A.

We now use an instantiation of k(n) with t t(t'), a = r(t') a', and c - c' + 1 (which is

justified since Itl = It(t')l < n + 1) to obtain

4. P [atto A S t(t').r(t').s' A C = c' + 11

Ojfarto A S = r(t') *a' A C c' + 1 + It(t')I].

By 3 and 4 we have

5. e [atto A S s' A C= c' A It'l= n +- I I

Ojatfo A S = r(t'). ' A C = c' + +lt(t')l A It'l -n + l.

We now apply an instance 1' I(n) again, this time with t = r(t'), s s', and c c'+ I + If(t')l
(which is justified since It = Ir(t')f < n + 1) to obtain

6. [at to A S = (t'). -' A C =c' + I + I(t')i D

Olatto AS = s' AC = c' +I+ l(t')l + lr(')].

By 5 and 6 we have

7. im [atto A S=t'.s' A c=,' A It'l=n+lI D

O[aito A s = ' C = C ' + I + If(t')l + Ir(t')Il.

Using the property

lIl > 0 =* Itl = I + It(t)l + Ir(t)l

we obtain:

8. j[atto A S = t' 8' A C =c' A It'l = n + I] D

O[aito A S = s' A C = c' + It'll.

Universally quantifying over the variables t', s' and c' and then renaming themt to t, a and c,

respectively, we obtain

9. 0 Vt,s,c {fatto A S = t. A C=c A Itl=n+11 D

>latto A S =s A C c + Ill}.

Line 9 holds under assumption 2 for every n,n > 0. Combined with I .his gives

10. E,(n) P. E:(+ 1).

:12

Therefore, by the deduction theorem we have

11. Is E(n) D E(n + 1).

This concludes the proof of the lemma.

Proof of Theorem:

To prove the theorem we observe that

12. 1- [attoA S = (X) A C -= 01 Ofatto A S=() A C= IX

by the lemma with t = X, s = (), and c = 0. But

13. 0 latto A S () A C = IXl] D 0[att. A C =-IXII

by SP applied to to --+ I.. Therefore, by combining 12 and 13, we have

14. 0 [atto A S = (X) A C = 01 D 0 [atet A C =Xll

i.e.,

15. in 01att, A C = Ilxi. I

One cannot fail to see the close resemblance between the temporal proof presentled here and
the informal inermittent-assertion proof conducted in IMIIJRI and [MW]. Our VI' princ'iple replaces
the "little hand simulation" of [BURI.

EXAMPLE: MUTUAL EXCILUSION (DI,KKER) F"ORMAL i'ROOI'S

We will now present a frormal proof of the accessibility proof of the program DK. Ai inlformal
proof of this was presented before and we advise the reader to refer to it. while readiig I he followitig
proof. The accessibility statement to be proved is

Theorem: In att I 0 att7.

We will make use of the invariants derived before, namely:

I- O(Qi A Q2 A Q3 A Q4)

where

Q1 : (yI= T) at{t 2 , 6,t 4 ,t6,t }

Q2 : (Y2 = T) at{m 2 ,rn 3 ,m 4 ,m 7 , M 8}

Q3 : at{t,,,tH} V ". at{m 7 ,'ms}

33

and

Q4: at{t3, ... ,o} A (t - 2)) D at{ms, mg, mo}.

Q4 was proved by the standard invariance rule in Lemma Bi and will not he reproven here.

'he proor or the theorein consists of a sequence of lemmas.

Lemma A: l [at f2 ,3 A (t= l)]D * at 7

Proof of Lemma A:

1. is latf 2 ,3 A (t I)] D {O'[att2,3 A (t-= 1)l V '0 att 7 }

by the AIT rule at f2,3 where 46 is t = 1. Note that by t = I, the t3 - £4 transition is never
possible.

I2.)a [at 12,3 A (t = 1) A at msj D [at t2 ,3 A (t = 1) A at m 5 A (Y2 = l

by Q2.

3. I [att 2,3 A (t =I) A at ?Y&5 A (Y2 I")] D 0 at17

by SI' applied to the path £3 -+ e2 -- 7 where 03 = 0 is (t = 1) A atm 5 A (Y2 F) and 4b is
att7.

4. 1- {O[atft 3 A (t =: I)] A atms} J O art 7

is a temporal conclusion or 2 and 3.

This corresponds to case a or Lemma A in the informal proor.

Next we have

5. i O[att 2 ,3 A (t =)] D r[att 2,a A (t =) A (1i=7"))

by Qz.

6. is {OIatf 2 ,3 A (t I) A (yi T)] A at{mt..m;M6}) D 0 atm5

by the S11 rule applied Io the path m6 --* m, m2 --+ m 3 - 74 -- 775 where X is t 2,3 A (t =

1) A (y, = T).

7. In {O[att 2,3 A (t=I)] A at{m1 ..4,me}} D Oatm5

by 5 and 6.

8. 1' {-[at 2 3 A (t= I)l A atr.. 6} D 0 att7

34

by 7 and 4.

This covers cases b, c, d, e, f of the informal Lemma A.

We have

9. 0 atmo : [atmo A (y2 = F)]

by Q 2.

10. in [atmo A (Y2 = F)] D {O[atmo A (Y2 F)I V 0 atm,}

by ALT at mo where 0 is V2 = F. Therefore

11. is atmo D [13(Y2 = F) V 0 atm1]

by 9 and 10.

12. N [D(Y2 1") A at t2,3 A (t 2= 1)] 3 at 7

by the S11 rule applied to 13 - 12 17 where 03 = 02 is t = I and X is Y2 = F.

13. in {"[att 2,3 A (t =-1)] A O(y2 = F)} D) at17

is a consequence of 12. By taking the disjunction of 13 and 8 we get

14. 0a {m[at'2,3 A (t =)] A (O(y2 =") V atm,..o)} D 0 at 7

and then

15. 1- {O[at t2,3 A (t- I)] A atmo} D O art7

is a consequence of 11 and 14.

This covers case g of the informal Lemma A.

We also have

16. P {O[att2,3 A (t =) A atm7 ..9} D 0 atmo

by the SP rule applied to the path m 7 m m 9 M 0 .

17. in {O[att 2 ,3 A (t= 1)] A atm 7 ..9} i 0 att7

by 15 and 16.

This covers case h of the proof.

Taking the disjunction of 8, 15 and 17 we obtain

18. is 0[at t2,:i A (t 1)] D O at 7.

35

Taking together I and 18 yields

19. r [att 2,3 A (t= 1)] 0 < att 7

which is the result or Lemaa A.

Lemma I is an invariance property P Q4 and is proved using the invariance principle.

Lemma C: P atf5 D 0> ate7

Proof of Lemma C:

1. l atfs D {D atf5 V O[atf 6 A(t=)J}

by the ALT rule at f 5 .

2. 1 -(t =2) V O(t= 1)

is a temporal tautology using the obvious invariance (t = 1) V (t = 2).

3. r 0 atf 5 : {Cl[att5 A (t = 2)] V 0[af4 A t = ()]}

is a temporal consequence or 2.

4. r [at 5 A (t- 1)] O j>ate 6 A(t= 1)]

by the ESC rule at 15 where is t = 1.

5. r 0 atf 5 D {[at5 A (t= 2)] V [att 6 A (t 1)]}

is a temporal consc(lIuencC or 3 and 4.

6. 0 ate,5 D {0[atf5 A (t = 2)1 V 0[ate 6 A (t = 1)l}

by I and 5.

7. N O[at 5 A (t =2)] D Ofatr, A (t =2) A (y- =-F) A atm,..7]

by Q, an(] Q4.

We have

8. 0 {[atf5 A (t = 2)] A atrn7} D 0[ats A (t 1))

by the ISC rule at m 7 where X is atf 5 A (t = 2), V) is att, A (t = I).

9. E {0[atf 5 A (t 2)] A atm 7 } D O[atf 6 A(t= I)]

36

by 8 and 4.

This covers case a or the informal Lemma C.

Denoting

Xo ate5 A (t 2 = 2) A (y- F) A atmi..7

we have

10. M [Oxo A at{ml,2 ,m 4..7}]) O[Xo A atm 7]

by the SP' rule applied to the path m 4 -- m 5 -* 7 6 -- 7n, -- -M 7n7.

11. ra [lxo A at{m1 ,2 ,m 4..7}] D 0[att6 A (t =1)]

by 10 and 9.

This covers cases b, d, e, f, g or the informal l,emma C.

We have

12. A [OXo A atm3 D KOatm 2

by the ESC rule at M 3. Thus

13. km [I1xo A atm3] D 0 [att 6 A (t 1)]

by 11 and 12.

This covers case c of the informal Lemma C.

Taking the disjunction or 11 and 13 and noting that Xo D atMr..7 we obtain

14. I' OXo D 0[at16 A(t= [)].

Combined with 7 this gives

15. 1 -[atf5 A (t = 2)! D Oat4 A (t Q 1)].

Combined with 6 we obtain

16. - at 5 : O[at 6̂ A (t = i)].

Now we can derive

17. 0 [at ,,6 A (t = 1)] D Olat2,3 A (t = I)]

by the SP' rle applied to the path f6 i - t2 where O6 = 0 is (t I),) is at P2,3 A (t I).
Using now Lemma A we obtain

18. 0 [attf, 6 A (t= 1)] 0 at17

which together with 16 gives

19. is atf 5 D 0 at 7 .

37

Proof of Theorem:

Consider now the final proof of the theorem

1. fa att, D OWat2

by ESC rule at 11

2. a at12 D 0at 7 V at13]
by the ESC rule at 12

3. r atl 2 D [* at17 V O att3]
which is temporally equivalent to 2

4. r at 3 D {O<[at2 A(t = 1)] V 0 att4 }
by the ESC rule at 135. r= [at t2^ (t = 1)] D *>at 6

[Atby Lemma A
S6. P at t4 D 0 att5

by ESC rule at 14
7. M att 4 D 0 atl 7

by Lemma C and 6

8. M ate3 D 0 att 7

by 4, 5, and 7
9. rs at t2 D 0 att 7

by 3 and 8

10. a att : <at1 7

by 1 and 9

This concludes the proof of the theorem.

EXAMPLE: CONSJMEIR PRODUCER

Consider next proving accessibility for the Consumer-Producer program (program Cl1). We
assume that the computations at to and at m 7 eventually terminate. The statement to he proved
is:

Theorem: l atto D >at 3

We will use in our proof the invariants which were established before

r fl(Qo A Q, A Q2)

where

Qo: (ef >_ O) A (cc > O) A (s > O)

Q ate 3..5 + atm 2 - 5 + s = l

Q2: cf + ce + at 2 6 + atm.. 6 N

Note that this is the first vxample that uses semaphores.
38

Assuming that the computation of yj at to eventually terminates we may conclude

isart• o D at tj.

The rest of the theorem is proved by two lemmas. Lemma A ensures that we get. from f, to t2
and Lemma 11 ensures that we get from 12 to 13.

Lemma A: r attt D 0 at12

Proof of Lemma A:

Since location tj contains a semaphore request instruction we will use the semaphore rule SEM
to show that eventually P[will be granted access to t2. The premise needed for the SEM rule is
O ate1 D >(ce > 0). An intuitive interpretation of this premise is that if we wait long enough at
'1, ce will eventually turn positive. To show this, we give first an informal exposition inspecting
the different locations in which P2 may currently be.

case a: P2 is at M6. Then eventually it will execute the release(ce) instruction to get ce > 0
as required.

case b: P2 is at M 2 , M 3 , M 4 or m5 . Then it will eventually get to m 6 which by case a will
cause cc to turn positive.

case c: P2 is at mi. Then since P, is at 11, s = 1 by Q1. Since we assume that ', is waiting
at il, s will remain 1 as long as P2 stays at m 2 . By the semaphore axiom applied at il,

P2 will eventually proceed to m2 and by case b, ce will eventually turn positive.

case d: P2 is at mo. Then since P, is at ti, ef + cc = N > 0 by Q2. If ce > 0 we have proven
our claim. Otherwise cf > 0 and will remain so as long as P2 stays at "to. Again by the
semaphore axiom P2 must eventually advance to mi and then by case c, cc will eventially
turn positive.

case e: P2 is at m 7 or 778. It will eventually get to m0 and then by case d, cc will evenlually
turn positive.

Let us now proceed with the more formal proof:

1. 0 [Oattt A atmol D (Date, A atm 6 A (ce > 0))

by Qo.

2. P [Dat, A atm 6 A (ce >0)1 D *(cc >0)

by lSC applied at. m 6 where 0 is ce > 0, X is at t, - is cc > 0.

3. r= [Oat t A atms) O(ee > 0)

is a conclusion of 1 and 2.

This corresponds to case a above.

We have

4. i [0-attt A atm 2..sJ D O atm6

39

by the SP rule applied to the path m 2 * Mn 4 M5 MS .

5. Is (0atti A atm 2 ..5] D 0(ce > 0)

is a conclusion or 4 and 3.

This covers case b above.

We have

6. 0 (ate, A ati D (8s 1)

by Q1 .

7. l 10 at A 0atm,] D 0(s=1)

:is a temporal consequence of 6.

8. r [Dattf A atmt] D Oatn 2

by the SEM rule at m, where X is attl.

9. k [atti A atmi] D 0(ce >0)

is a conclusion of 8 and 5.

This covers case c.

We have

10. 0 [D att, A atmo] D [(cf > 0) V (ce > 0)]

by Q2.

11. I D(att A atmo A (cf > 0)) D O(cf > 0)

is a trivial temporal tautology.

12. P [Dat t A atm o A (cf > 0)] D 0 at m

by the SEM rule at m0 , where 0 is cf > 0, X is atf1 .

13. [-atti A atmo A (cf > 0)] D 0(ce > 0)

is a conclusion of 12 and 9.

14. i [Oate, A at mo] D 0(ce> 0)

by a disjunction or 10 and 13.

This corresponds t case d.

40

~Lei

A
We have

15. In 10 atti A atm7,8] 0 <> atmo

by the SP rule applied to the path 17 -I* s -- to.

16. 0 [LI atti A atm7,] D O(Ce> 0)

by 15 and 14.

This covers case e.

By taking the disjunction of 3, 5, 9, 14 and 16 we obtain

17. P []attl D O(ce > 0).

By applying the SEM rule at 11 we obtain

18. r attl D 0 at12 . U

Lemma B: is att2 : <> atI3

Proof of Lemma B:

Here again we will apply the SEM rule, this time at t2. The needed premise for its application
is:

PE 0lat 12 D O(s > 0}.

By inspecting the current location of P2 we distinguish three cases:

case a: P2 is at m5. It will eventually advance to m6 and turn s positive.

case b: P2 is somewhere in {m 2 ,m 3 ,m 4). It will eventually get to m 5 and then by case a will
turn s positive.

case c: P2 is somewhere in {mo,m 1 ,m 6 ,m 7,m,}. Bly Q1, since P, is at ti, s is currently equal
to 1.

Thus the more formal proof is given by:

1. In [r0at12 A atms] fatt 2 A atm 5 A (s > 0)]

by Qo.

2. I [Oat 2 A atm 5 A (a > 0)] D *(a>O)

by ESC applied at m5 where 0 is a > 0, X is at t2, 0 is a > 0

3. , [0att2 A atm 5j D <(e >0)

41

_I

is a conclusion or 1 and 2.

This covers case a.

We have

4. 0 [att2 A atm 2 ..4] D c'(atm5)

by the SP rule applied to the path m2 -- m 3 -- m4 m5.

5. I [OatI 2 A atm 2..4] D O(S > 0)

*by 4and 3.

This covers case b.

We have

6. Im [O att2 A -atm2..5] D (S=1)

by Q1.

7. k [Oate 2 A -atm 2 ..5 1] D >(s > 0)

by 6.

This covers case c.

fBy taking the disjunction of 3, 5, and 7 we obtain

8. Im 0 att2 D 0(8 > 0).

Applying the SEM rule at t2 yields

9. to at 2 :) Oatt3 ,

which is the desired Lemma). 1

EXAMPLE: BINOMIAL COEFFICIENT

We will now establish the termination of the program BC for the distributed evaluation
or a binomial coelliciCnt, Since we have already proved the partial correctness or this program,
termination will guarantee total correctness.

The statement to be proved is:

Theorem: M *(att, A atm.)

The initial condition associated with the proper computation or the program is

att o A at mo A (y, I n) A (Y2 =) A (Y3 = I) A (Y4 = 1) A (0 < k < n).

42

We will usC in our proof the following invariants that were established above:

0- 0(Q A Q IA Q2),

where

Qo is atl.2..4 +atM4..6+Y4 I

Q, is ((n -k) 5y, !5n) A (0O<Y 2 k)

Q2 is ate]. (y, = n -k).

We start by proving a sequence or lein inas:

Lemma At: M [atl, A (z'i = u)] D 0[atI.2 A (Yi =U)j

This lemnia ensures that we never get stuck at t, which is a semaphore instruction.

Proof of Lemma At:

The proof distinguishes three cases according to the current location of P2 . InI all cases we
assumne that P1 is waiting at 11.

case a: P2 is at int;. The next timne it will bC scheduled will increment Y4, making it positive.

case b: P2 is in {m14,i,s}. Eventually it Will get to M6 and increment Y4.

case c: P12 is in {rno, MI , in2 , in3) in 7 , m,}. By Qo and the ract that P, is at f 1, y4 is currently
positive.

In all three cases we can show that the value of y, never changes.

Thus we have:

1. Is 10at t A ati'I1l D IDOat th A at M6 A (Y4t)

by Qo.

2. IE [Oat t, A at M 6 A (Y4 ! 0)] D O(Y > 0)

* Iby the VSC rule at ?i6 where 0 is y4 0, X is at t.

3. l [Oat f A atms M6 DcO4 > 0)

*by 2and 1.

This covers case a.

We have

4. 1 IO alj A atm4 ,5] D O atmS

43

by the Sl' rule applied to the path m 4 - m 5 -'* i 6.

5. I [att, A atm 4,5 1 D *(Y4 > 0)

by 4 and 3.

This covers case b.

We have

6. r [0ate1 A 'atm 4 .. 61 D (y4 >0)

by Qo. Therefore

7. 0= [0 at f A ~-atM4..6 D OY 4 > 0)

This covers case c.

By taking the disjinction of 3, 5 and 7 we obtain

8. I= Olat& f O(Y4 > 0).

Applying the SE'M rule at tj where 0 is y, = u we obtain

9. 0 [atl A (Y, = u)] D [at12 A (y, = u)].

Lemma A2: 01 {[atti5 A (y, = u + I)] V [alP6 A (yl = u)]} 0 c1atto A (yi = u)I

This lemn'a ensures that being anywhere in l1 to t5 we return to to with the value of y,
smaller by I than the original and bcimig at f6 we return to to with the value or yj unchanged.

Proof of Lemma A2:

After being ensured by ,emrmra A1 of not being blocked at 1t all that remains is to trace the
value of yl. Indeed:

1. l [a 1t, A (y, = u + 1)] D [atf2 A (Y = u +

by Lemma At.

2. O {[atf 2..r, A {Y, = u + 1] V [att 6 A(y, =u)} D 0[attoA(y, =u)]

by applying the SI' rule to the path t2 - t5 3 5 -+ f6 to where 02 = = 04 '05 is
YI = (U + l), 0'6 is Y1 u, and 0] is at o A (YI= u).

3. In (tt, A (y, = u +)J : Ofatto A (y,=)j

by I and 2.

4. {altt,, A (y, = + - I1) V [at t6 A (u, = u)]) D 01tto A (y, U)

44

Ma A.-

by 2 and 3.

This establishes Lemma A2. I

Lemma A3: is [atto A (pa I n - k)] [>att. A (Yli - k)].

This lemma establishes the termination of P, if started at to with y, n - k.

Proof of Lemma A3:

Define the auxiliary assertion:

EL(u): jatto A (Yli = u)J D <[att, A(, = n - k)J.

We will establish the lemma by showing that

is(u > n -k) :) El(u).

This will be established by induction on u > n - k. We will have to show first

(a) Pi E, (n - k)

and then

(b) is [(u > n-k) A E,(u)] D E(u+ 1).

(a) To prove part a we observe that Et(n - k) just says that if we are at to with yJ n - k we
will eventually get to I4 with y, = n -k. This is obvious since when Y, = n - k, P1 proceeds
directly from to to 4,. Indeed:

1. i fatto A (y, =n-k)] z <>[att,A(y =n-k))

by the E SC rule applied at to where 0 is yt = n - k considering just the exit to -+ t, whose
enabling condition c is yt = n - k. In other words,

1'. is Rk(n- k)

(b) To prove part b we assume that u > n - k and Ei(u) is true and consider an execution that
starts at to with y = u + 1. Since u + I > n - k we will proceed to 11 with y =.u + I. By
Lemma A2 we will return to to with y, u. Now by the assumption of Elka,) we will eventually
get to 1. with y = n- k.

For the formal proof, we assume:

2. is u>n-k

and

3. is E,(u),

3'. m [at to A (Vi)J D *[at A (Vtn- k)l.

45

Then

4. I lat!o A (Yt =u + I)] D latLo A (y, = u+ 1) A (yi > ,r-k)l

by 2.

5. In (afto A (y, =u+ 1) A (yt > n-k)] O >latti A(,i u +l)

by the ESC rule at to using only the to 1 t exit where 0 is yj > n - k.

6. 0 [atto A (y1 = u + 1)l D Olati1 A (y = u + 1)]

by 4 and 5.

7. ! [atto A (y = u+ I)l D 1atto A (yi = u)]

by 6 and Lelmma A2.

8.) [argo A (y, =u+t)(<[atA(yi=n-k)]

by 7 and 3'; i.e., by th(l delinition ofi El,

Applying the deduction theorem to 2, 3, and 8', we obtain

9. is (u, > n - k) D l',(u)) EI,(u, + I)].

Now we may combine parts a and b (i.e., I' and 9) to deduce the lemma using the induction
principle. U

Lemma A: Im 01att, A (y =- n - k)]

This states that no matter where we are in a properly initialized execution of the program,
we will eventually wind tip at t with Yi = n - k.

Proof of Lemma A4:

There are three cases to be considered according to the current location of Pi.

case a: P1 is already at e'. Then we have by Q2 that y, = n - k.

case b: I', is at to. Then we are assured by Q, that y' _> n - k; hence, by Letnina A3, we will

wind up'at , with yj -- (n - k).

case c: P, is anywhere else, that is in {1, ... ,t6}. Then we will eventually get to t o by
Lemma A2, which is already covered by case b.

We proceed with the formal proof. We have

1. in art,D [aft, A (y, =n-k))

46

by Q2.

This corresponds to case a.

We have

2. t ,to J [atto A (yI> n-k)]

by Q1.

3. in at to [at t. A(y, =,- k)l

by Lemma A3.

This covers case b.

We have

4. 1 att.. 6 O c'atto

by Lemma A2.

5. M atI,.6 D Olatt.A(Y,=n -k))

by 4 and 3.

This covers case c.

Taking the disjunction of 1, 3 and 5 we obtain

6. M <>[att. A (yi n -k)}

which establishes the Iemma. I

We now turn to the termination of P2.

Lemma 110: i [atm 2 A (Y2 = U)l D <[atM3 A (y2 = U)1

This lemma states that we can never get blocked at M 2.

Proof of Lemma B0:

Ily Lemma A4 we arc guAranteed that ', will eventually get to 4. with Yi = n - k. III the
worst case, by the time P gets to 1,, 112 is still waiting at M 2. But then by Q), Y2 < k and
yj = n - k so that Y1 + Y2 <_ n which enables the exit condition and leaves it enabled until '2
moves. This proof should not be considered as saying that '.2 will indeed wait at M 2 until I',
terminates, but this approach provides the easiest proof.

Proceeding with more formal proof we have

1. i [atm2 A (2 = u)] D {(atM 2 A (12 = IL)] V 0[at,,,3 A (y.i u)}

4 47
op

by the ALT rule at 71 2 where is Y2 u.

2. 0i 0[atH12 A (Y2 - u)] D 0[atm 2 A (y2 = u) A att. A (yj n - k)]

by Lenmma A4.

3. O [at,, 2 A (y2 it) A att. A (y, =n - k)]
a [t?,2 A (Y2 u) A att. A (y, + Y2 < n)]

using Y2 _ k given by Q1.

r 4. r lat?12 A (y2 = u) A at4 A (yI + Y2 n)] 0j [atm3 A (Y2 = u)]

by ESC at it 2 considhering only the exit m 2 -- m 3 where is (Y2 u) A att, A (YI + Y2 n).

5. 0 0[at 1112 A (Y2 =u)[D 0([at"' 3 A (Y2 =u)]

by 2, 3, and 4.

6. r [at "1.2 A (Y2 u)I D 0[atm 3 A (Y2 u)j

by I and 5. 3

Lemma BI: r [at,,13 A (y2 = :D 0 [atm., A (yA 2 =)

This lenirra states that '2 does not get blocked at m 3 but eventually proceeds to "4 4 with an
unchanged value of Y2.

It is analogous to Leina A and has a very similar proof. In that proof we distinguish three

cases according to the loatiion or P1 . They are: I'l at f4, 1'2 in { 2 , 6}, and P2z elsewhere. Their
analysis is identical to that of ILerimna Al.

Lemma B2: r {[at ,nI A (Y2 = 11)] V jat 2 .7 A (Y2 = U + 01)} D [ato A (Y2 = 1 +,)

This lemma states that if we are anywhere in in, to m 7 we will eventually return to m 0 with

Y2 properly adjusted.

proof of Lemma 1)2:

1. 0 [at7 4..7 A (y2 =u + 1)] D 0[atm, A (Y2 =U+)1

by the S11 rule applied to the path m 4 M - --' mo where 44 5 06 - 7 is

Y2----U+ I and 0 is atmoA(y 2 u+).

2. P [attn3 A (y 2 =u+)1 D 0[atmoA(y 2 +

by Lenitna BI) and I.

3. 01 [at??2 A (y2=u±) + D 0at rno A(Y 2 =U +1

48

by Lemma BO0 and 2.

4. in [atm1 A (Y2 U)J D O[atM2 A (Y2 U±+

by the ESC rule at nil where 0 is y2 = u and ?k is at M2 A (Y2 = U + 0).

5.)a [atmi A (Y2 = u)j D 0Z[atmo A(Y2 == U+1)

by 4 and 3.

By taking the .disjunction of 1, 2, 3 and 5 we obtain:

6. 0 {[atmi A (Y2 =U)I V fatmr2..7 A (Y2 = U + l)11 Of~abno A (Y2 =u + t)].

Lemma B&3 is [atmo A (Y2 ! k)] :D *[atm. A (y -k)]

This lemma establishes the termination of P2 if started at MO With Y2 k.

Proof of Lemma B13:

Similarly to the proof of Lemma A3 we define the auxiliary assertion

E2 (U): [atmo A (Y2 =u)] D OfJatm. A (Y2 =k)].

The lemma is cstablished by showing that

Analogously to A3 this is proven by descending induction on us < k. We show tile two clauses:

(a) ii E 2(k)

and

(b) Pa [(u < k) A E2 (U + 1)] :) E2 (U).

["art a is proved by observing the direct path from mo to me in the case that k /. Part b is
proved by tracing the execution from rno with Y2 = U < k to m1l With Y2 I' 4- 1 1,1d uIse the
induction hypothesis to finally guarantee atm, A (Y2 = k).

The details of thle formal proof are very similar to those of A3.

Lemma 114: in *atm.

This statement says that regardless of where we are in a properly initialized] execution of the
program, we eventually wind uip at m,.

Proof of Lemma 114:

Similarly to the proof of Lemma M4 there are three eases lo be considered:

49

case a: ! 2 already at m.-

case b: P2 currently at mo0 . Then we have by Q, that Y2 < k and hence by Lemmua B3 we
will eventually reach m,,.

case c: P2 is elsewhere. TIhen we will eventually get to mo by Lemma 812.

The formal details are simnilar to those of Lemmia AM.3

Proof of Theorem:

To conclude the proof of the theorem we observe that:

t. D 4 Eat t

by the ALT rule since f, has no exits.

2. ra 00atfe

by Lermina A4 and 1. Si riilarly,

using Lemmna 114 and the ALT rule at m..

A temnporal consequence or 2 and 3 is

r- OlZatA atmeI. I

Acknowledgement

We thankfully acknowledge the help extended to us by Yoni Malachi, Pierre Wolper, Frank
Yel lin, Joe Weeni ng, and Ri vi Zarhi in reading the earlier dIrafts of the nian uscri;t. Special thanks
are due to Evelyn Eldridge-Diaz for TEXing the mianuscript.

RE~FERElNCES

IlIMP] Ben-Ari, M., Z/. Manna and A. lInueli, "The temnporal logic of branching timne," Proceedings
or thle Eighth A(NM Symnposiumi on Pri ncipIles of I 'rograinn m rg L~anguages, Wi lliamnsburg, VA,
,ian. 1981, pp. 16i9-176.

113Ull] Bu rstall, ll.M., "P'rogrami proving as hand si nulation with a little induction," Proc. llFlP
Congress, Amnsterdam, The Netherlands (1974), North Holland, pp. 308-312.

[CLI] Clarke, E.M., "Synthesis or resource invariants for concurrent programns," ACM Trans. on
Programmring Languages and Systemns, Vol. 2, No. :1 (July 1980), pp. 3.38-358.

I)IJI lDijkstra, E. W., "Cooperati ng sequent~al processes", i n Programming Languages and Syistems
(F. Gcenvy.- ed.), Academnic Press, New York, NY, 19138, pp. 431 112.

50

[FRA] Francez, N., "The analysis or cyclic programs," Ph.D. Thesis, Applied Mathematics Dept.,
The Weizmann Institute of Science, IRehovot, Israel, July 1976.

[KEL] Keller, R.M., "Formnal verification or parallel progrm'ns," CACM, Vol.19, No. 7 (.July 1976),
pp. 371-384.

[LAM] Lamport, L., "Proving the correctness of multiprocess programs," IEEiE Transactions on

Software Engineering, Vol. SE-3, No. 7 (March 1977), pp. 125-143.

(MANI] - Manna, Z., "Logics of programs," Proc. IFI1) Congress, Tokyo and Melbourne (October
1980), North llolland, pp. 41-51.

[MAN2] Manna, Z., "Verification of sequential programs: Temporal axioniatization" in Theoretical
Foundations of Programming Methodology (IF.L. Bauer, ed.), NATO Scientilic Series, 1). Riedel
Pub. Co.,)ordrecht, lolland, 1981. Also, Computer Science Report, Stanford University,
Stanford, CA (October 1081).

[MI'1] Manna, Z. and A. P"nueli, "The modal logic of programs," Proc. 6th International (Colloquiurn
on Automata, Langu:ges and Programming, Graz, Austria (July 1979). Lcture Notes in
Computer Science, Vol. 71, Springer Verlag, pp. 385-409.

[MI21 Manna, Z. and A. Inueli, "Verification or concurrent prograins: The temporal framework,"
in The Correctness Problem in Computer Science (iLS. Boyer and .1 S. Moore, eds.), International
Lecture Series in Cooputer Science, Academic IPress, London, 1981. Also, Corn puter Science
Report, Stanford University, Stanford, CA (.June 1981).

(MWJ Manna, Z. and 1R. Waldinger, "Is 'sortetrice' sometimes better than 'Always'?: Ilrerinitlcnt
assertions in proving program correctness," CACM, Vol. 21, No. 2, pp. 159-172 (I,'ctruary
1978), pp. 159-172.

[O(1] Owicki, S. and 1). Gries, "An axiomatic proof technique for parallel progr;ims," Aa't:1
Informatica, Vol. 6 (1976), pp. 319-340.

[OL] Owicki, S. and L. Lam port, ")roving liveness prol)erties of concurrent. progr:wis," un-
published report (october 1980).

[I'NIJI] Pnueli, A., "The temporal logic of programs," Proc. 18th l"O0S, 1)rovidence, II (Nuvemlmer
1977), pp. 46-57.

[INIJ2] I)nueli, A., "The temporal semantics or concurrent programs," 1'roc. Syv-l 1positllll on

Semanlics of Concurrent Computations, HEvia[., France (July 1979), Lecture Not.-, in ('onlputer
Science,Vol. 70, Springer Verlag, pp. 1-20.

51

